Carissimos(as) colegas Professor(as)! Neste blog você irá encontrar as mais variadas atividades pedagógicas, para todas as disciplinas e modalidades de ensino. pronto para vc professor(a) que busca inovações.
domingo, 25 de outubro de 2015
Desafios matemáticos
Desafio 1
EU TENHO O DOBRO DA IDADE QUE TU TINHAS QUANDO EU TINHA A TUA IDADE. QUANDO TU TIVERES A MINHA IDADE, A SOMA DAS NOSSAS IDADES SERÁ DE 45 ANOS. QUAIS SÃO AS NOSSAS IDADES???
Desafio 2
UM AUTOMÓVEL COMPORTA DOIS PASSAGEIROS NO BANCO DA FRENTE E TRÊS NO BANCO DE TRÁS. CALCULE O NÚMERO DE ALTERNATIVAS DISTINTAS PARA LOTAR O AUTOMÓVEL UTILIZANDO 7 PESSOAS, DE MODO QUE UMA DESSAS PESSOAS NUNCA OCUPE UM LUGAR NOS BANCOS DA FRENTE.
Desafio 3
AS IDADES DE DUAS PESSOAS HÁ 8 ANOS ESTAVAM NA RAZÃO DE 8 PARA 11; AGORA ESTÃO NA RAZÃO DE 4 PARA 5. QUAL É A IDADE DA MAIS VELHA ATUALMENTE?
Desafio 5
UM HOMEM GASTOU TUDO O QUE TINHA NO BOLSO EM TRÊS LOJAS. EM CADA UMA GASTOU 1 REAL A MAIS DO QUE A METADE DO QUE TINHA AO ENTRAR. QUANTO O HOMEM TINHA AO ENTRAR NA PRIMEIRA LOJA?
Desafio 6
DETERMINE O MENOR NÚMERO NATURAL CUJA:
DIVISÃO POR 2 TEM RESTO 1;
DIVISÃO POR 3 TEM RESTO 2;
DIVISÃO POR 4 TEM RESTO 3;
DIVISÃO POR 5 TEM RESTO 4;
DIVISÃO POR 6 TEM RESTO 5;
DIVISÃO POR 7 TEM RESTO 0.
Desafio 7
CONSIDERE OS NÚMEROS OBTIDOS DO NÚMERO 12345, EFETUANDO-SE TODAS AS PERMUTAÇÕES DE SEUS ALGARISMOS. COLOCANDO ESSES NÚMEROS EM ORDEM CRESCENTE, QUAL É O LUGAR OCUPADO PELO NÚMERO 43521?
Desafio 8:
COLOQUE OS NÚMEROS 1, 2, 3, 4, 5, 6, 7, 8 E 9 DISPOSTOS NAS 9 CASAS DE UM TABULEIRO DE JOGO DA VELHA DE MANEIRA QUE A SOMA DOS 3 ALGARISMOS DE QUALQUER RETA E QUALQUER DIAGONAL RESULTE 15.
Desafio 9:
Num sítio existem 21 bichos, entre patos e cachorros. Sendo 54 o total de pés desses bichos, calcule a diferença entre o número de patos e o número de cachorros.
Desafio 10:
Se eu leio 5 páginas por dia de um livro, eu termino de ler 16 dias antes do que se eu estivesse lendo 3 páginas por dia. Quantas páginas tem o livro?
Desafio 11:
Com os algarismos x, y e z formam-se os números de dois algarismos xy e yx, cuja soma é o número de três algarismos zxz. Quanto valem x, y e z?
Desafio 12:
eseja-se descobrir quantos degraus são visíveis numa escada rolante. Para isso foi feito o seguinte: duas pessoas começaram a subir a escada juntas, uma subindo um degrau de cada vez enquanto que a outra subia dois . Ao chegar ao topo, o primeiro contou 21 degraus enquanto o outro 28. Com esses dados foi possível responder a questão. Quantos degraus são visíveis nessa escada rolante? (obs: a escada está andando).
Desafio 13
Joãozinho, um rapaz muito indiscreto, sabendo da reação de uma senhora, que conhecia há algum tempo, quando falaram em idade, resolveu aprontar. Numa reunião social, na presença de todos, perguntou-lhe a idade. A senhora respondeu:
- Tenho o dobro da idade que tu tinhas, quando eu tinha a idade que tu tens menos quatro anos. Daqui a cinco anos a soma de nossas idades será 82 anos.
Se você fosse um dos presentes, você concluiria que a senhora tem que idade?
Desafio 14:
Um comerciante compra uma caixa de vinho estrangeiro por R$1.000,00 e vende pelo mesmo preço, depois de retirar 4 garrafas e aumentar o preço da dúzia em R$100,00. Então, qual é o número original de garrafas de vinho na caixa?
Desafio 15:
Uma pessoa, ao preencher um cheque, inverteu o algarismo das dezenas com o das centenas. Por isso, pagou a mais a importância de R$270,00. Sabendo que os dois algarismos estão entre si como 1 está para 2, calcule o algarismo, no cheque, que foi escrito na casa das dezenas.
Desafio 16:
Corte uma torta em 8 pedaços, fazendo apenas 3 movimentos (3 cortes).
Desafio 17:
O menor múltiplo de 1998 que possui apenas os algarismos 0 e 9 é 9990. Qual é o menor múltiplo de 1998 que possui apenas os algarismos 0 e 3?
Desafio 18;
Em uma reta há 1999 bolinhas. Algumas são verdes e as demais azuis (poderiam ser todas verdes ou todas azuis). Debaixo de cada bolinha escrevemos o número igual à soma da quantidade de bolinhas verdes à direita dela mais a quantidade de bolinhas azuis à esquerda dela. Se, na sequência de números assim obtida, houver exatamente três números que aparecem uma quantidade ímpar de vezes, quais podem ser estes três números?
Respostas no site:http://www.somatematica.com.br/desafios.php